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Introduction

What types of environmental flows do we hope to analyze with this method?

• Highly non-linear, multi-scale flows in oceans, lakes, and rivers

• Flows that are well approximated by the variable density incompressible Navier-Stokes equations

• Examples: internal waves, coastal plumes, density currents in lakes, flows in branched estuarine

slough networks, flows past highly complex topography

What are the issues involved?

• Complex and often sparse geometries

• Large ranges in spatial and temporal scales

• Moving fronts and highly complex mixing zones

What do we hope to provide with such a tool?

• An enhanced ability to interpret and extend the results of field and laboratory studies

• A predictive tool for both engineering and science
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Variable Density Incompressible Navier-Stokes Equations

• Momentum balance

~ut + (~u · ∇)~u = −
∇p

ρ
+ ~g + ν∆~u

• Divergence free constraint

∇ · ~u = 0

• Density conservation

ρt + ~u · ∇ρ = 0

• Passive scalar transport

ct + ~u · ∇c = ∇ · (kc∇c) + Hc

Note that we do not employ Boussinesq or hydrostatic approximations.
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Solution Strategy: Temporal Discretization

We build on a classic second-order accurate projection method (Bell, Colella, Glaz,

JCP 1989). We split the momentum equations into three pieces:

• Hyperbolic: ~ut + (~u · ∇)~u = H

where we exactly enforce a divergence free state for the advective velocities, and compute the

advective term explicitly

• Parabolic: ~ut = ν∆~u + S

which we solve implicitly for a predictor velocity

• Elliptic: ∇ ·
1

ρ
∇p = ∇ · (−(~u · ∇)~u + ν∆~u)

which we solve implicitly for pressure, and subsequently correct the predictor velocity

To update the scalar equations we do similar hyperbolic and parabolic

decompositions.
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Solution Strategy: Spatial Discretization Using Embedded Boundaries (EB)

For the bulk of the flow, O(n3) cells in 3D, we compute on a regular Cartesian grid.

We use an embedded boundary description for the O(n2) control-volumes (in 3D)

that intersect the boundary.

Advantages of underlying rectangular grid:

• Grid generation is tractable, with a straightforward coupling to block-structured

adaptive mesh refinement (AMR)

• Good discretization technology, e.g. well-understood consistency theory for finite

differences, geometric multigrid for elliptic solvers.
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Embedded Boundary Control Volumes

Three example irregular cells are shown below. Green curves indicate the intersection of the exact

boundary with a Cartesian cell. We approximate face intersections using quadratic interpolants.

• For each control volume we compute: volume fractions, area fractions, centroids, boundary

areas, and boundary normals. These are all we need for discretizing our conservation laws.

• Unlike typical discretization methods, the EB control volumes naturally fit within easily

parallelized disjoint block data structures.

• Efficiently permits dynamic coarsening and refinement of highly complex geometry as a

simulation progresses.

• EB’s are second-order accurate. Stair-step methods are first-order accurate for area error, and

zero-order accurate for perimeter and boundary normal errors.
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Block-Structured Adaptive Mesh Refinement

In adaptive methods, one adjusts the computational effort locally to maintain a uniform level of

accuracy throughout the problem domain.

• Refined regions are organized into rectangular patches. Refinement is possible in both space

and time.

• AMR allows the simulation of a range of spatial and temporal scales. Capturing these ranges is

critical to accurately modeling multi-scale transport complexities such as boundaries, fronts,

and mixing zones that exist in natural environments.

• Using EB AMR finite-volume methods we maintain conservation and second-order accuracy.
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EB Grid Generation Examples

• Madracis Mirabilis Coral (thanks to Dr. Jaap A. Kaandorp for the CT scan data)

9



EB AMR Grid Generation Examples

• Northern San Francisco Bay with AMR (using USGS DEM data)
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Results: 3D Convergence Study

• Below is a 3D convergence study for a Re = 100, rotational flow past a complex geometry:

Base Grids 16-32 Rate 32-64

L1 Norm of U Velocity Error 1.69e-2 2.32 3.39e-3

L2 Norm of U Velocity Error 5.28e-2 1.76 1.55e-2

L1 Norm of W Velocity Error 1.48e-2 2.29 3.03e-3

L2 Norm of W Velocity Error 4.69e-2 1.83 1.32e-2
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Results: Breaking Internal Waves on a Slope

• Flow is inside a 0.5m tall, by 3m wide tank, with an 8:1 slope starting 1m from

the left side

• Below left is the initial density distribution (blue is light fluid, red is heavy fluid),

below right is the initial conditions for a passive scalar

• Density ratio of light fluid to heavy fluid is 1000/1030, and our pycnocline is a

step-function. The pycnocline is perturbed on the left side of the tank.

• Thanks to Prof. Fringer of Stanford University for this test problem
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Breaking Internal Wave on a Slope (Density left, Scalar right)
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Results: Breaking Internal Waves on a Slope: Smoothed Pycnocline
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Results: Lock-Exchange with AMR

• Flow is inside a 0.5m tall, by 3m wide tank.

• On the left side of the tank we start with light water, on the right is heavy

water. The density ratio of light fluid to heavy fluid is 1000/1030.

• On the following lock-exchange slides, the lower figure is a zoom in on the

center region of the tank.
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?

18



Lock-Exchange: Why is AMR important?

Answer: We can add computational effort only where we need it!
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Conclusions and Future Work

• We now have a second-order accurate incompressible Navier-Stokes code

that has been validated in 2D and 3D.

• Our AMR version is showing reasonable results and is under review to

ensure second-order accuracy.

• Future Work:

– Field scale applications

– Fourth-order accuracy (see my JCP paper with P. Colella).
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